A Generalization of the Epstein-penner Construction to Projective Manifolds

نویسندگان

  • D. COOPER
  • D. D. LONG
چکیده

We extend the canonical cell decomposition due to Epstein and Penner of a hyperbolic manifold with cusps to the strictly convex setting. It follows that a sufficiently small deformation of the holonomy of a finite volume strictly convex real projective manifold is the holonomy of some nearby projective structure with radial ends, provided the holonomy of each maximal cusp has a

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction and Recognition of Hyperbolic 3-Manifolds with Geodesic Boundary

We extend to the context of hyperbolic 3-manifolds with geodesic boundary Thurston’s approach to hyperbolization by means of geometric triangulations. In particular, we introduce moduli for (partially) truncated hyperbolic tetrahedra, and we discuss consistency and completeness equations. Moreover, building on previous work of Ushijima, we extend Weeks’ tilt formula algorithm, which computes th...

متن کامل

A Generalized Construction of Mirror Manifolds

We generalize the known method for explicit construction of mirror pairs of (2, 2)-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously kn...

متن کامل

An Algorithm for the Euclidean Cell Decomposition of a Cusped Strictly Convex Projective Surface∗

Cooper and Long generalised Epstein and Penner’s Euclidean cell decomposition of cusped hyperbolic n–manifolds of finite volume to non-compact strictly convex projective n–manifolds of finite volume. We show that Weeks’ algorithm to compute this decomposition for a hyperbolic surface generalises to strictly convex projective surfaces.

متن کامل

F eb 1 99 4 Description of moduli space of projective structures via fat graphs

We give an elementary explicit construction of cell decomposition of the mod-uli space of projective structures on a two dimensional surface, analogous to the decomposition of Penner/Strebel for moduli space of complex structures. The relations between projective structures and P GL(2, C) flat connections are also described.

متن کامل

Frobenius Manifolds, Projective Special Geometry and Hitchin Systems

We consider the construction of Frobenius manifolds associated to projective special geometry and analyse the dependence on choices involved. In particular, we prove that the underlying F-manifold is canonical. We then apply this construction to integrable systems of Hitchin type.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014